Thresholded Multivariate Principal Component Analysis for Phase I Multichannel Profile Monitoring

نویسندگان

  • Yuan Wang
  • Yajun Mei
  • Kamran Paynabar
چکیده

Monitoring multichannel profiles has important applications in manufacturing systems improvement, but it is non-trivial to develop efficient statistical methods due to the facts that profiles are high-dimensional functional data with intrinsic innerand inter-channel correlations, and that the change might only affect a few unknown features of multichannel profiles. To tackle these challenges, we propose a novel thresholded multivariate principal component analysis (PCA) method for multichannel profile monitoring. Our proposed method consists of two steps of dimension reduction: It first applies the functional PCA to extract a reasonable large number of features under the in-control state, and then uses the soft-thresholding techniques to further select significant features capturing profile information under the out-of-control state. The choice of tuning parameter for soft-thresholding is provided based on asymptotic analysis, and extensive numerical studies are conducted to illustrate the efficacy of our proposed thresholded PCA methodology.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

A Change-Point Approach for Phase-I Analysis in Multivariate Profile Monitoring and Diagnosis

Process monitoring and fault diagnosis using profile data remains an important and challenging problem in statistical process control (SPC). Although the analysis of profile data has been extensively studied in the SPC literature, the challenges associated with monitoring and diagnosis of multichannel (multiple) nonlinear profiles are yet to be addressed. Motivated by an application in multi-op...

متن کامل

Phase II monitoring of multivariate simple linear profiles with estimated parameters

In some applications of statistical process monitoring, a quality characteristic can be characterized by linear regression relationships between several response variables and one explanatory variable, which is referred to as a “multivariate simple linear profile.” It is usually assumed that the process parameters are known in Phase II. However, in most applications, this assumption is viola...

متن کامل

Monitoring and assessment of a eutrophicated coastal lake using multivariate approaches

Multivariate statistical techniques such as cluster analysis, multidimensional scaling and principal component analysis were applied to evaluate the temporal and spatial variations in water quality data set generated for two years (2008-2010) from six monitoring stations of Veli-Akkulam Lake and compared with a regional reference lake Vellayani of south India. Seasonal variations of 14 differen...

متن کامل

Phase II logistic profile monitoring

In many industrial and non-industrial applications the quality of a process or product is characterized by a relationship between a response variable and one or more explanatory variables. This relationship is referred to as profile. In the past decade, profile monitoring has been extensively studied under the normal response variable, but it has paid a little attention to the profile with the ...

متن کامل

Monitoring and diagnosis of multichannel nonlinear profile variations using uncorrelated multilinear principal component analysis

KAMRAN PAYNABAR1, JIONGHUA (JUDY) JIN2,∗ and MASSIMO PACELLA3 1H. Milton Stewart School of Industrial & Systems Engineering, Georgia Institute of Technology, Atlanta, GA 30332-0205, USA 2Department of Industrial and Operations Engineering, University of Michigan, Ann Arbor, MI 48109-2117, USA E-mail: [email protected] 3Dipartimento di Ingegneria dell’Innovazione, Universita’ del Salento, Piazza T...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2017